Штампы 3D

Руководство пользователя

Содержание

Назначение приложения	
Этапы проектирования	
Начать проектирование	
Ориентировать деталь	
Создать переход	
Разогнуть	
Разместить	10
Копирование	11
Пуансон	
Пуансоны	13

Назначение приложения

Штампы 3D – приложение для Компас-3D предназначено для автоматизации проектно-конструкторских и технологических работ проектирования штампов для обработки металлов под давлением.

Приложение обеспечивает:

- Анализ 3D-модели детали и проектирование формообразующих элементов пресс-формы.
- Моделирование литниковой системы
- Проектирование пакета пресс-формы в автоматическом или интерактивном режиме.
- Контроль конструктивной допустимости деталей пресс-формы как необходимое условие работоспособности пресс-формы.
- Автоматическое формирование в соответствии с ЕСКД комплекта документации, необходимой для выпуска пресс-формы (3D-моделей, сборочных чертежей, спецификаций, деталировок).

Приложение содержит:

- Базу данных оборудования, которая включает более 60 модели термопластавтоматов.
- Базу знаний конструкций пресс-форм с возможностью ее расширения с учетом дополнительных требований пользователя;

• Параметрические библиотеки чертежей конструктивных элементов пресс-форм.

Система позволяет:

- Проектировать пресс-формы конструкций «съем толкателями», «съем плитой» и их комбинации.
- Проектировать пресс-формы с одной или двумя параллельными плоскостями раскрывания.
- Проектировать пресс-формы с боковым разъемом (ползунами).
- Проектировать пресс-формы с «типичным» или «колонкакрепление» способом центрирования подвижной и неподвижной частей.
- Изменять конструкции и конструктивные особенности элементов пресс-формы с целью полной адаптации технологии изготовления и возможностей инструментального производства.

Штампы 3D — это мощное средство повышения производительности труда конструкторов оснастки, повышения качества проектирования и, как следствие, повышения конкурентоспособности продукции предприятия

Этапы проектирования

Проектирование оснастки является частью процесса технологической подготовки производства и, как следствие, связано с иными производственными процессами (изготовление, испытание внедрение, наладка, модернизация оснастки, оптимизация конструкции по результатам эксплуатации и т. д.).

Проектирование штампа в системе технологически сводится к нескольким последовательно связанным этапам:

- 1. проектирование переходов состояний исходной детали
- 2. разработке и оптимизации схемы раскроя ленты;
- 3. размещению вырубных и гибочных пуансонов;
- проектирование пакета пространственной компоновка штампа, вставке стандартных компонентов (колонки, втулки, штифты и т. п.), проектированию нестандартных элементов, получение комплекта документации и его доработке

Визуально система интегрирована в рабочее окно системы КОМПАС-3D и состоит из панели инструментов 🗏 Штаммы 3D системы, состав которой приведен ниже

S <u>Начать проектирование</u> – начать(продолжить) проектирование штампа для данной детали

🙆 <u>Ориентировать деталь</u>

а <u>Создать переход</u> – отнести новые к поверхности на новый переход

- <u> Разогнуть</u> разогнуть выделенные поверхности
- 👪 <u>Разместить</u> разместить деталь на полосе
- 🖥 <u>Копирование</u> копировать выделенные поверхности на полосу
- <u>Пуансон</u> отнести выделенные поверхности к пуансону
- 🌃 <u>Пуансоны</u> редактирование свойств пуансонов
- <u>Пакет</u> проектирование пакета штампа

Начать проектирование

Проектирование штампа начинается (продолжается) со взятия модели в работу командой

К «Начать проектирование». Автоматически создается файл с добавлением к имени файла «путь/имя детали-99.m3d» (или отрывается ранее созданный), с которым уже идет дальнейшая работа При этом локальная система координат (ЛСК) и ось Z совпадает с осью пресса и направлена в сторону подвижной части. В случае создания происходит анализ поверхностей детали и разделение на поверхности верхней и нижней частей, а также боковые стенки толщины материала. В данном файле сохраняется служебная информация ситемы о ходе проетирования.

Ориентировать деталь

В случае, когда необходима другая ориентация детали выполняем команду

🙋 «Ориентировать деталь»

внизу окна Компаса появится панель и доступными для выделения будут плоские грани детали, при выделении которой деталь меняет ориентацию так что направление нормали совпадает с осью Z мировой системы координат.

	Поворот 0		🔹 🗌 Обратное
	Параметры		
Укажите плоск	ую грань		

В случае необходимости можно указать флажок «Обратное» и нормаль грани будет противоположна оси Z, а также дополнительно указать угол разворота детали вокруг оси Z. Эти манипуляции предназаначены для правильного раздления поверхностей детали (на поверхности верха и низа), а также для удобства создания переходов и никак не влияют на размещение детали на полосе (штампе).

Завешается работа нажатием ⁴ Создать объект, после которого происходит происходит анализ поверхностей детали и разделение на поверхности верхней и нижней частей, а также боковые стенки толщины материала, в соотвествии до выбранной ориентации. В случае нажатия ⁹ изменений ориентации не происходит.

Создать переход

Команда 差 Создать переход (отнести новые к поверхности на новый переход) служит для создания цепочки переходов (трансформации геометрического состояния детали) в общем случае это переходы от начальной геометрии детали до плоской развертки.

начальном состоянии выполнение команды приводит, к В копированию поверхностей низа детали (выполняется переход от твердотельной модели детали К поверхностной модели). Поверхности, которые однажды скопированы на следующий переход в дальнейшем не копируются – выполняется копирование только новых поверхностей. Скопированные поверхности группируются и запоминаются как поверхности перехода. При этом участвуют любые поверхности, полученные с помощью базового функционала системы Компас. В дальнейшем мы можем их использовать и легко размещать на соответствующих нашим решениям шагах полосы.

Разогнуть

Команда 🔊 Разогнуть (разогнуть выделенные поверхности) обратная команда к процессу гибки – позволяет нам совершить переход от согнутого состояния к разогнутому. Одновременно (и только!) может быть выполнено разгибание нескольких поверхностей у которых общая ось и радиус сгибания. Команда выполняется с учетом внешнего и внутреннего сгибов и выполняется с условием сохранения объема детали.

На рисунке показан пример выполнения команды (слева до выполнения, показана выделенная поверхность сгибания) а справа деталь после разгибания.

Допускается построение перехода разгибания использованием базового функционала системы Компас с целью достижения результата отличного от выполняемого командой Разогнуть .

Разместить

Команда Разместить (разместить деталь на полосе) предназначена для моделирования размещения деталей на полосе начального размещения (либо детали в штампе в случае однопереходного штампа).

Запуск команды допускается при достижении на последнем переходе плоской развертки детали (все поверхности перехода принадлежат одной плоскости). После запуска появляется схематическое изображение полосы в окне просмотра

и появляется панель команд

задавая значения соответствующих параметров можно изменить шаг, количество отображаемых шагов на модели полосы, количество одновременно штампуемых деталей, начальное положение каждой из деталей (смещение по (х, у) и угол разворота вокруг некоторой точке на детали – заданной на панели Предварительная ориентация).

При завершении выполнения команды нажатием ¹ Создать объект, происходит сохранение параметров и выполнение построений модели полосы в соответствии до выбранных параметров. В случае нажатия ⁹ изменений не происходит.

Копирование

Команда <section-header> Копирование (копировать выделенные поверхности на полосу) предназначена для моделирования результатов формообразующих операций на полосе. Выделяем (селектированием системы Компас) нужные поверхности (которые обязательно должны принадлежать одному переходу)

Появляется панель команд которая позволяет задать шаг на котором будет происходить указанная трансформация

При этом на полосе показываются соответствующие изменения

Завершается выполнение нажатием ¹ Создать объект, для сохранения изменений. В случае нажатия ² изменений не происходит.

Пуансон

Команда 🗊 Пуансон (отнести выделенные поверхности к пуансону) предназначена для информирования библиотеки о заданных пуансонах. Пользователь выделяет (селектирует средстави Компаса) необходимые поверхности одного пуансона. В случае выделения нескольких поверхностей система относит этот пуансон к формовочным. Для формовочного пуансона запоминаются поверхности и в дальнейшем на них будет построен пуансон. В случае выделения

одной плоской поверхности сформированной заплаткой (или заплатки в дереве построения) система воспринимает ее как вырубной пуансон. Для вырубного пуансона проводятся построения моделирующее его действие на полосу.

Если, не выделена ни одна поверхность, то выполнение команды приводит к срытию(показу) геометрии полосы с целью удобства построения заплаток моделирующих пуансон.

Пуансоны

Команда 🕄 Пуансоны (редактирование свойств пуансонов) служит для просмотра, удаления или редактирования свойств пуансонов. После запуска команды появляется панель команд

```
Всего 2 Текущий 0 Параметры Вырубной • Верхений • По контуру • Буртон • По контуру • шиллендричекое с фаской • Удалить 
Паранетры
Редактирование свойств пуансонов
```

На которой показано количество пуансонов, индекс текучий пуансон, его параметры () и кнопка удалить текучий пуансон.

Изменение праметров происходит выбором необходимого значения в соответствующем комбобоксе. При изменении типа пуасона с вырубного на гибочный происходит удаление соотвествующих вырубному пуансону действий на полосе.

Пакет

Проектирование пакета состоит из нескольких последовательных этапов, формируемых следующими кнопками команды 🚟 Пакет

При нажатии на кнопку 🐺 **Проектировать** запускается процесс расчета размеров деталей штампа, по результатам которого формируется математическая модель (эскизный проект) штампа. На экране видно упрощенное изображение штампа с характерными точками редактирования (которые задают определенные параметры) при наведение на которые указателя мыши открываются соотвествующие узлы на закладке Параметры пресс-формы.

При этом в нижней части указаны список названий параметров и их значений, при двойном щелчке на котором можно редактировать значения. После внесения изменений нужно выполнить команду 器 Пересчитать.

Нажатие кнопки 3D- модель, Комплект чертежей приводит к включению/ выключению генерации соотвественно 3D моделей/ 2D чертежей. Генерация 2D чертежей пресс-формы в каталоге текущего проекта в невидимом режиме. В видимом режиме формируется только спецификация. Генерация 3D моделей проходит в невидимом режиме, за исключением нескольких деталей. Команда сохраняет текущее состояние проекта и системы в модели для которой проектируется штамп. В дальнейшем при открытии данной модели система предложит загрузить сохраненные с ней данные в случае повторного взятия ее в работу.