

KONTAC ЭЛЕКТРОСНАБЖЕНИЕ

Решение для автоматизации создания проектной и рабочей документации для силового оборудования (ЭМ), внутреннего электрического освещения (ЭО) и электроснабжения (ЭС) проектируемых объектов.

ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ

Вся информация по объекту содержится в электротехнической модели

ИНЖЕНЕР-ПРОЕКТИРОВЩИК РАЗДЕЛОВ ЭЛЕКТРОСНАБЖЕНИЯ МОЖЕТ:

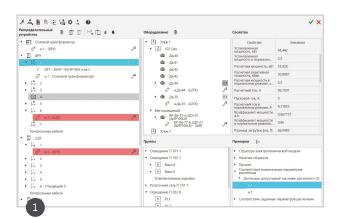
ПРОСТОТА В СЛОЖНЫХ РАСЧЕТАХ

Все необходимые электротехнические расчеты выполняются автоматически

СООТВЕТСТВИЕ РОССИЙСКИМ СТАНДАРТАМ

Вся выходная документация соответствует нормативным документам

- разместить светотехническое оборудование в автоматическом или ручном режимах и автоматически рассчитать освещенность;
- разместить электрическое оборудование: розетки, выключатели, шкафы и щитовое оборудование, УЗО, реле и другое требуемое оборудование;
- создать электротехническую модель, содержащую данные об оборудовании, а также структуре силовых и контрольных кабельных связей между единицами оборудования;
- проложить трассы и определить кабельные конструкции;
- автоматически рассчитать установленную и расчетную мощность, расчетный ток, токи короткого замыкания и другие электротехнические характеристики;
- автоматически сформировать схему электрическую принципиальную однолинейную;
- автоматически сформировать спецификации, журналы и отчеты.


ОСНОВНЫЕ ПРЕИМУЩЕСТВА:

- дружественный, интуитивно понятный интерфейс;
- большой спектр расчетов, проверок и выходной документации;
- БД оборудования, изделий и материалов;
- поддержка форматов DWG и IFC для обмена данными с другими участниками проекта;
- интеграция со смежными разделами: технология, инженерные системы, строительные конструкции;
- легкий переход с 2D- на 3D-проектирование;
- ориентация на российского пользователя и отечественные нормы и стандарты;
- интеграция с системой документооборота;
- наличие собственного математического ядра C3D.

1 ЭЛЕКТРОТЕХНИЧЕСКАЯ МОДЕЛЬ

Электротехническая модель как ядро приложения для компоновки единой электрической сети, автоматического формирования схемы электрической принципиальной однолинейной, спецификаций, отчетов и журналов позволяет:

- добавлять распределительные устройства и щитовое оборудование, включая пускорегулирующую и защитную аппаратуру;
- автоматически рассчитывать электротехнические характеристики;
- добавлять вводной, секционный и отходящий фидеры;
- осуществлять групповое или индивидуальное подключение оборудования к распределительным устройствам;
- определять взаиморезервируемое оборудование и автоматически пересчитывать электротехнические характеристики;
- определять силовые и контрольные кабели;
- назначать требуемый кабель для прокладки трасс и рассчитывать длину кабельных линий;

- проверять структуру модели, подключения в распределительных устройствах, соответствие параметрам;
- выполнять маркировку объектов электротехнической модели;
- получать различные виды документов (схемы, отчеты, журналы и спецификации) (рис. 1).

2 РАСЧЕТЫ

В электротехнической модели все необходимые расчеты производятся автоматически и не требуют от пользователя специальных действий.

Светотехнические


Расчет освещенности может быть выполнен двумя методами:

- методом коэффициента использования, когда необходимо равномерно осветить прямоугольное помещение, на основании известной площади и светотехнических свойств (рис. 2);
- точечным методом, когда требуется располагать осветительные приборы нестандартным способом в соответствии с дизайнерскими решениями или специфическими требованиями к освещению помещений (рис. 3).

Электротехнические

Расчеты выполняются для групповых сетей, одиночных подключений, цепных соединений распредустройств:

- мощность (установленная, расчетная и мощность в нормальном режиме);
- расчетный ток (расчетный, пусковой и в нормальном режиме);
- разность загрузок фаз (расчетная и в нормальном режиме);
- токи утечки;
- падение напряжения;
- количество жил в кабеле;
- токи короткого замыкания (ГОСТ 28249—93):
 однофазный (минимальный и максимальный),
 двухфазный (минимальный и максимальный),
 трехфазный (минимальный и максимальный),
 ударные замыкания (рис. 4).

Свойство	Значение
Тип фидера	Вводной фидер
Система заземления	TN-S
Фаза	L1, L2, L3
Установленная мощность, кВт	44,442
Установленная мощность в	2,2
Расчетная мощность, кВт	53,926
Расчетная мощность в нормальном	2,2
Расчетный ток, А	89,9022
Расчетный ток в нормальном режим	4,31855
Коэффициент мощности, д.е.	0,86578
Коэффициент мощности в	0,86
Разница загрузки фаз, %	66,934
Разница загрузки фаз в нормальном	0
Гок фазы L1, А	89,9022
Ток ф 2, А	29,7271

Ток фазы L1 в нормальном режиме, А	4,31855
Ток фазы L2 в нормальном режиме, А	4,31855
Ток фазы L3 в нормальном режиме, А	4,31855
Ток короткого замыкания 1-но фазн	2,63203
Ток короткого замыкания 1-но фазн	2,63203
Ток короткого замыкания 2-х фазный	3,40543
Ток короткого замыкания 2-х фазный	3,40543
Ток короткого замыкания 3-х фазный	3,93225
Ток короткого замыкания 3-х фазный	3,93225
Ударный ток КЗ, кА	5,56105
Токи утечки, мА	36,3254
Номинальное напряжение, В	400
Падение напряжения, %	11,1938
Падение напряжения перед фидеро	1,40616
Падение напряжения после фидера, %	9,78763

3 ТРАССИРОВКА

После того как в электротехнической модели определена аппаратура, контрольные и силовые кабели, произведен выбор марок и сечений кабелей, осуществлена проверка подключений, выполняется прокладка трассы одного кабеля или группы кабелей. Маршрут трассы ведется по архитектурной подоснове плана стандартным функционалом системы. При прокладке трассы указывается тип линии, моделирующей кабельные трассы: линия проводки «общее изображение», линия проводки в трубе, гофре, в лотке и т. д., — что находит отражение в 3D-представлении. Для вертикальных участков используются высотные отметки и условное обозначение перехода трассы на другую отметку или этаж.

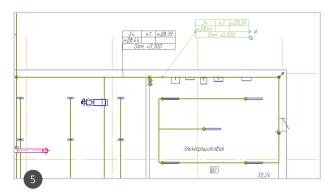
При трассировке и прокладке кабелей приложение формирует ответвительные коробки в автоматическом режиме.

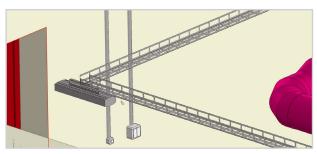
Расчет длины кабеля выполняется автоматически с учетом: запаса кабеля на укладку, запаса кабеля на разделку и так далее, формируется кабельный журнал.

Для маркировки трассы предусмотрен специальный инструмент «Динамический маркер», который выводит весь состав трассы и автоматически корректирует при внесении изменений в электротехническую модель (рис. 5).

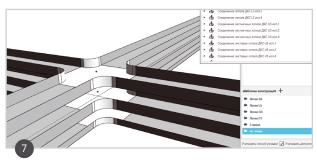
Инструмент «Комплектация» позволяет быстро создать элемент электротехнической модели, например, монтажный комплект, крепеж и т. д., и внести его в отчетный документ (рис. 6).

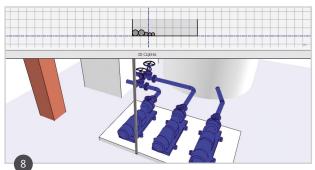
4 КАБЕЛЬНЫЕ КОНСТРУКЦИИ

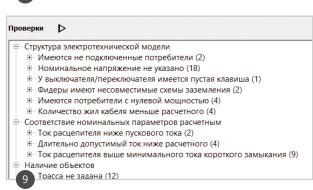

В состав решения включен конструктор кабельных трасс, позволяющий формировать сечения кабельных трасс. Этот процесс представляет собой определение взаимного расположения кабельных конструкций внутри трассы. Предусмотрены конструкции в виде коробов, лотков, труб и свободного объема (рис. 7).


Просмотр расположения кабелей, трасс, помещений и потребителей на 3D-виде обеспечивает визуальнографический контроль (рис. 8).

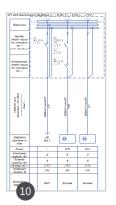
5 ПРОВЕРКИ

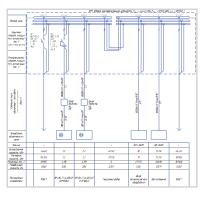

Электротехническая модель автоматически осуществляет ряд различных проверок на правильность выполнения, которые сгруппированы по категориям:


- структура электротехнической модели;
- наличие объектов;
- соответствие заданных параметров расчетным;
- соответствие номинальных параметров расчетным. В настройках электротехнической модели можно указать допустимые значения падения напряжения на кабельной линии, разницы фаз и падения напряжения на фидере, влияющие на проверки (рис. 9).



			KOMPAN	CTALLIAM					
Karanor Karanor •	Объекты	ស័ស់ស័ស							
Kewanga Karaner • Hassawe znasukopa kessawe/n	un uo	Othertsi	Наименование и техническая карактеристика	Тип, марка, обезначение документа, опросного листа	Кад продукции	Постищик	Macca 1 ag _e er	Каличеста	Едонна измерения
Kaferanasi sena Kommud paramer respropasosadi	17	(1/3)	Клемный разъем коногоразовый	221-613	221-613	Wago	0,01	10	est.
Конплект нанцивых нует с набельны Объект		[3/3]	Комплект концеком муфт с кабеличими ваконечниками	EPKT 0047-L12-CEE01		Raychem	0.05	2	Saff.
Others Crare nonocoean 40-5		[3/3]	Crans nonocosan 40x5	FOCT 106-2006			1,57	2	as .
_		(2/3)	Keterawarkereg	Magyre M/20 Ex	MAT206x	000 "Aerex"	0,2	6	WT.





6 ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

По результатам работы формируются следующие проектные документы:

- планы расположения оборудования и прокладки кабельных трасс;
- схема электрическая принципиальная однолинейная (рис. 10);
- спецификация оборудования, изделий и материалов (общая и на этаж) (рис. 11);
- ведомость осветительного оборудования;
- кабельнотрубный журнал в соответствии с ГОСТ 21.613—2014 (по форме 6);
- кабельный журнал для прокладки методом трасс в соответствии с ГОСТ 21.613—2014 (по форме 7);
- кабельный журнал для сети освещения по ГОСТ 21.607—2014 (по форме 4)/ГОСТ 21.608—2014 (по форме 6) (рис. 12);
- отчет «Расчет электротехнических нагрузок» по РТМ 36.18.32.4-92 (рис. 13).

Поэ	Ноитенобожие и техническоя характеристика	Тип, нарка, адаэночение документа, опросного листо	Код продукции	Паставщих	E8. U3H8- P8- HUR	Коли- чест- бо	Mocc 1 eë x2
	Низкадалья нэг адарудаданыг						
1.1	Короус петаллический КСРМ 16.6.4-2	KCPM 16.6.4-2		IEK .	ua.	1	
2.1	Шкаф напальный цельнасварной ВРУ-1 1845.450P31 ТПАМ	BPY-1184545 P31 TITAN	YKH1-C3-1844-31	IEK	gσ,	1	
3.1	Карпус теталлический ШМП-1-0 74 У1 Р65 GARANT	MMN-1-0 74 91 P65 GARANT	YXM40-01-65	/EX	υσ.	1	
							\Box
4.5	Шкаф напальный цельнасварной ВРУ-1 18.45.45(РЗ1 ТПАN	BPY-1184545 P31 TITAN	YKH1-(3-1844-31	IEK .	eσ.	1	
4.2	Надульный автоматический выключатель для промышленного и дытового принемения	C601 B 1A IP	A 9F93101	Schneider Electric	un.	1	0,12
	Осбетительные придоры						-
5	Светильник световиовний GALAD Арклайн Эконон LED-40	GALAD Арклайн Эконом LED-40	10:03354	GALAD	un.	5	2,20
6	(Bemunawax HB LED 100 D40 Ex 500 DK	HB LED 100 D40 Ex 5000K	1224001610	Световые Технологии	eσ.	33	3,50
7	Dansor relicoi chadarioi 2004 Fili gi Carlo Fili Chichi Ruccon affili (157 le 178 n. Fin fili 8-8 (5-400 relicoi 740	BC003-40-001 Light Line 840	1153440001	SA Aphrotoxi cter mavu-pociodof	υσ.	10	2,20
							-
	Злектроу столовочные извелия						
8	Виклечатель, делый, двухкладишный, серии Вгача, наружнай устанодки.	Ввухклавишный настенный	10001	акс	un.	1	
9	Зоектрическая розетка, с загеплениет, со шторкопи, красная, 2 тай, серии Вгача.	Brava red	76482R	DKC	υn.	2	
+1	1						

		- 1	tradus don	Andre Breg				CHETHAR SEAN	SNV			Pg			
ianedose 37	na saltavua Konu-ecinda 30) um	Haran	25/20	го с Казффициана испальнования К	peor	uusva udvai aanu	K.E.	K/SJgq	reg. ²	300 per medinan 100 p. j. j. 100 j. j. 100 j. j.	Казфриссена дасчатнай надарахи	amidian rahi P _e W _e EK _e P _e	реантивная нвар в _э АЛГ, ў . Ірр	100000 18*A 5,=\P;\Q;	Packethia max A Sy
		R,	P, 400,		cosp	tge	7				#		ne n. t		
Attuamen-	2	/	- 6	5	6.7	6.2		3	9	10	- 7	2	3	3	8
0844	- 7	5,00	500	500	286	0,59	5,00	8,97	225,00						
HB 120 100 040 Ex 5000N-4007p	2	0,33	3.96	800	2%	0,29	3.96	88	530						
8AEA0 Apirash Brown (E0-40-100 62	2	ą v	0,21	100	0,95	0,32	0.21	0,07	0,02						
HB LED 100 D40 Ex 5000N-UDV p	6	0,33	832	100	2%	0,29	132	0,38	243						
5ALAO Apinash Brown (E0-40-1307 62	3	av.	0,32	100	0,95	0,32	0,32	a,n	400						
HB (ED 100 D40 Ex SOCON-0007p	4	0,33	£32	100	2%	0,29	132	0,38	443						
Лондон Розелиа 2-наст. баз хазана. 10.4 баж. FKS-Pu 1	f	600	6,00	100	286	0,59	6,00	3.58	36,00						
Asolov Pasenna 2-nacm des xasenn 10A den. EKF-Ps.2	f	600	6,00	100	2.86	0,59	6,00	256	36,00						
Brava red-P	1	600	6.00	100	0.86	0.59	600	2,56	36,00						

$ \frac{1}{2} \cos 1$				reduce dos	46			, Ab	CHEST HAT DRIVERS				Pau	NEWWARK ANDWARD	CON.	
F. P. P. C. COMP 1997 1. 1 257 257 150 150 150 150 150 150 150 150 150 150	awavadowa	Konvecedo	Полинов ная (фотонавленная)		Assessores	rand d peace	rasiji duvoence peacrodinai		K,P, 59	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	число 3Л ДР. J ²	pachetivasi		step 8,418,7,50	v8*4	Pachemen max. A \$ = \frac{S_2}{\sqrt{2} \text{if}}
7	307					casp	fap				Log.	Χ,	54,06	QSKP.top	S W Q.	*VI
1	1	2	2	- 4	5	61	62		A	9	127	- #	12	77	N	15
## 2	CCA 2121-		0.01	0.01	100	100	2,00	221	0.00	0,00						
7-75 2 27	360/122-		0,09	2,09	100	0.96		0,09	0,02	0,00						
2	CCA 2121-	2	221	0,02	[20	100	2,00	0.02	0,00	0,00						
J 0.77 0.84 100 0.95 0.77 0.84 100 0.95 0.87 0.87 0.89 0.07 0.94 0.97 0.94 0.97 0.94 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	00167-2x36 006 Linkor-	2	821	243	100	0,85	0,61	Q43	0.26	0,09						
1	1.2 236 HF 1844-	3	821	2.64	100	2,96	0.29	0.64	2.00	ав						
0-268 1	10767-2x36 006 Linkor-															
1	CCA 2101-	1	201	0,01	100	100	2,00	201	0.00	0,00						
102 7 2.59 2.79 105 2.86 2.77 2.77 2.58 2.51	1016 7-2x3 6 006 Linkor-		0.21							204						
1 27	360/122-	2	0,09	2.19	(20	0.96	0,29	4.79	4.05	0.01						
2-3-18 (27 27 122 144 147 27 2.24 2.25 2.24 2.25	10167-2x36 006 Linkor-															
95'- 1 0.71 0.07 100 0.84 107 0.71 0.00 0.00 0.00 0.00 0.00 0.00		1	0.01	0,01	[00	100	2,00	0.01	0,00	0,00						
192- 2 0.09 0.19 100 0.96 0.29 0.19 0.05 0.01	-001 PRS-	1														
	CCA 2101-		0.01	0.04	100	100	2.00	0.04	2.00	0.00						
27 138 626 238 657 138 157 685 17 160 138 157 138	C 360/132-	2	2.09	2.19	(00	2.96	0.29	2.79	2.25	0.01						
77 138 107 436 457 138 132 465 17 102 138 137 163																
		27		2.38	[20	0.86	0.57	2.28	192	2,65	- 17	100	228	192	3,89	5,6
	006 Linkov- CCA 201- 19:004- 2-16 -001 PRS- CCA 201- C 360/112-	1 1 4 2	0.01 0.01	0.01 0.21 0.04 0.19	100 100 100 100	100 0+8 100 0.96	2,00 182 2,00 0,29	201 221 204 279	200 239 200 205	2,00 2,04 2,00 0,01	17	100	138	192	3,89	
									\Box	\Box		_				_
																_
									Have 45	grafica (Sa Roda Sa	15				
See Booker Man. See Set.										9		Электро	снабжение	цехе № 3	P Auc	0 2
one lines see that some sees Generous 3 Jacomporcularence uses M 3 / p	-								Wyseys							
Динесто 3лектороснаймение цеха № 3 Стойм Акто	- 4	3 —							F250X3423						40	KOH

7 БАЗЫ ДАННЫХ ОБОРУДОВАНИЯ

Решение поставляется с каталогами элементов электрического оборудования. Каждый элемент в базе данных оборудования является интеллектуальным и содержит всю необходимую информацию, начиная с наименования и заканчивая 3D-моделью. Базы данных оборудования открыты для редактирования и пополнения, также есть возможность подключать IES-файлы базы данных светильников.

Используйте КОМПАС. Электроснабжение, чтобы сократить сроки проектирования, снизить риск ошибок и повысить качество проектной документации.

Скачайте пробную версию с помощью QR-кода, установите Строительную конфигурацию и начните новые проекты с использованием российских технологий.

8 (800) 700-00-78 ascon.ru | kompas.ru

Подробно функционал приложения представлен на видео

